Ashwaní Gupta

1. The $8^{\text {th }}$ term of an Arithmetic Progression (A.P.) is $37 \&$ its $12^{\text {th }}$ term is 57 . Find the A.P.
2. Find the sum of first 25 terms of an A.P. whose nth term is given by $t_{n}=7-3 n$.
3. Which term of Arithmetic Progression $3,10,17 \ldots$ will be 84 more than its $13^{\text {th }}$ term?
4. The $8^{\text {th }}$ term of an Arithmetic Progression (A.P.) is -23 \& its $12^{\text {th }}$ term is -39 . Find the A.P.
5. The $8^{\text {th }}$ term of an Arithmetic Progression (A.P.) is 32 \& its $12^{\text {th }}$ term is 52 . Find the A.P.
6. The $10^{\text {th }}$ term of an Arithmetic Progression (A.P.) is $47 \&$ its $15^{\text {th }}$ term is 72 . Find the A.P.
7. The nth term of an Arithmetic Progression (A.P.) is given by $t_{n}=4 n-5$. Find the sum of the first 25 terms of the given A. P.
8. The $10^{\text {th }}$ term of an Arithmetic Progression (A.P.) is 44 \& its $15^{\text {th }}$ term is64. Find the A.P.
9. The $n t h$ term of an Arithmetic Progression (A.P.) is given by $t_{n}=5 n-3$. Find the sum of the first 20 terms of the given A. P.
10. The nth term of an Arithmetic Progression (A.P.) is given by $t_{n}=7 n+1$. Find the sum of the first 30 terms of the given A. P.
11. The $10^{\text {th }}$ term of an Arithmetic Progression (A.P.) is 57 \& its $15^{\text {th }}$ term is 87 . Find the A.P.
12. If m times the m th term of an A. P. is equal to n times its $n t h$ term. Find the $(m+n) T h$ term of an A. P.
13. Find the sum of first 15 terms of an A. P. whose nth term is $9-5 n$.
14. If the sum of nth term of an A. P. is given by $5 n^{2}+3 n$. Find the $n t h$ term of an A. P.
15. Find the number of terms of an A. P. : 54, 51, 48,..... So that their sum is 513.
16. If the nth term of an A. P. is $(2 n+1)$. Find the sum of nth terms of an A. P.
17. Find the sum of all two digits odd positive numbers.
18. The $8^{\text {th }}$ term of an A. P. is zero. Prove that $38^{\text {th }}$ term is triple of its $18^{\text {th }}$ term.
19. Find the sum of all two digits positive numbers divisible by 3 .
20. If $5^{\text {th }}$ term of an A. P. is zero, show that 33th term is 4 times its $12^{\text {th }}$ term.
21. Find the sum of 51 terms of the A. P. whose $2^{\text {nd }}$ term is 2 and $4^{\text {th }}$ term is 8 .
22. The sum of first n terms of an A. P. is given by $S_{n}=3 n^{2}-n$. Determine the A. P. and its $25^{\text {th }}$ term.

Ashwaní Gupta

23. The sum of 3 nos. in A. P. is 27 and their product is 405 . Find the nos.
24. The sixth term of an A. P. is -10 and the tenth term is -26 . Determine the $15^{\text {th }}$ term of the A. P.

25 . Find the sum of all the natural nos. less than 100 which are divisible by 6 .
26. How many terms are there in an A. P. whose first term and $6^{\text {th }}$ term are $-12 \& 8$ respectively and sum of all its terms is 120 ?
27. In an A. P. the sum of the first n terms is $\frac{5 m^{2}}{2}+\frac{3 n}{2}$. Find its $20^{\text {th }}$ term.
28. In an A. P., the sum of its first n terms is $n^{2}+2 n$. Find its $18^{\text {th }}$ term.
29. The first term, common difference and last term of an A. P. are 12, 6 and 252 respectively. Find the sum of all terms of this A. P.
30. Which term of the A. P.: $21,42,63,84, \ldots .$. is 420 ?
31. The first term of an A. P. is 5 and its $100^{\text {th }}$ term is -292 . Find the $50^{\text {th }}$ term of the A. P.
32. The first term of an A. P. is -2 and its $10^{\text {th }}$ term is 16 . Find the $50^{\text {th }}$ term of the A. P.
33. Find the sum of all multiples of 5 lying between $101 \& 999$.
34. The third term of an A. P. is 1 and its $6^{\text {th }}$ term is -11 . Find the $15^{\text {th }}$ term and rth term of the A. P.
35. The third term of an A. P. is p and its $4^{\text {th }}$ term is q. Find the $10^{\text {th }}$ of the A. P
36. Determine k so that $k+2,4 k-6$ and $3 k-2$ are the three consecutive terms of an A. P.
37. Determine k so that $4 k+8,2 k^{2}+3 k+6$ and $3 k^{2}+4 k+4$ are the three consecutive terms of an A. P.
38. If 5 times the $5^{\text {th }}$ term of an A. P. is equal 10 times is $10^{\text {th }}$ term, show that $15^{\text {th }}$ term is zero.
39. If in an A. P., the $24^{\text {th }}$ term is twice the $10^{\text {th }}$ term, show that $36^{\text {th }}$ term is twice the $16^{\text {th }}$ term.
40. Which term of the A. P. $5,2,-1 \ldots$ is -22 ?
41. The p th term of an A.P. is q and the qth term is p. find the $(p+q)$ th term of the A.P.
42. The sum of $5^{\text {th }}$ and $7^{\text {th }}$ term is 52 and the $10^{\text {th }}$ term is 46 . Find the A. P.
43. If $9^{\text {th }}$ term of an A. P. is zero, show that $29^{\text {th }}$ term is twice its $19^{\text {th }}$ term.
44. Show that the sum of first n even natural numbers is equal to $\left(1+\frac{1}{n}\right)$ times the sum of the first n odd natural numbers.
45. The sum of n terms of a sequence is $3 n^{2}+4 n$. Find the nth term and show that the sequence is in $A . P$.
46. If S_{n} denotes the sum of n terms of an A. P., whose common difference is d, show that $d=S_{n}-2 S_{n-1}+S_{n-2}$.
47. If S_{1}, S_{2}, S_{3} are the sum of three different A. P.'s, whose first term of each is being unity and the respective common difference being $1,2,3$; prove that $S_{1}+S_{3}=2 S_{2}$.
48. If the pth term of an A. P. is $\frac{1}{q}$ and the qth term is $\frac{1}{p}$, show that the sum of $p q$ term is $\frac{1}{2}(p q+1)$.

Answers:

1. $2,7,12,17 \ldots .$.
2. $5,1,-3,-7 \ldots$
3. 1175
4. 3285
5. $10 n-2$
6. 2475
22.146
25.816
28.38
7. -142
8. $-47,13-4 r$
9. 0,2
10. $1,6,11,16$
11. -800
12. $-3,2,7 \ldots$
13. $8,12,16,20 \ldots$
14. $3,9,15,21$
15. 18 or 19
16. 1,665
17. $(3,9,15)$ ○($(15,9,3)$
18. 12
19. 5412
20. 26
21. $7 q-6 p$
22. 10th term
23. $6 n+1$
24. 25 th term
25. $2,7,12,17$
26. 990
27. -465
28. $n(n+2)$
29. 3,774
30. -46
31. 99
32. 20th term
33. 98450
34. 3
35. 0
