Ashwani Gupta

Class-X
 Assignment (Chapter-9)
 Height and Distance

Q1: A man is standing on the deck of a ship, which is 8 m above water level. He observes the angle of elevation of the top of hill as 60° and the angle of depression of base of the hill as 30°. Calculate the distance of the hill from the ship and the height of hall.

Q2: An airplane, when 3000 m high, passes vertically above another airplane at an instant when the angles of elevation of the two airplanes from the same point on the ground are $60^{\circ} \& 45^{\circ}$ respectively. Find the vertical distance between the two airplanes.

Q3: A person standing on the bank of a river observes that angle of elevation of the top a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and the width of the river.

Q4: A man on the deck of the ship is 12 m above water level. He observes that the angle of elevation of the top of cliff is 45°, and the angle of depression is 30°. Calculate the distance of the cliff from the ship and the height of the cliff.

Q5: From the top of the tower 50 m high the angles of the depression of the top and bottom of the pole are observed to be $45^{\circ} \& 60^{\circ}$. Find the height of the pole.

Q6: From the top of a tower ' h ' m high, the angles of depression of two objects on the same side of the tower are found to be α and $\beta(\alpha>\beta)$. If the distance between the objects is " p ' metres, show that the height ' h ' of the object is given by the expression $h=\frac{p \tan \alpha \tan \beta}{\tan \alpha-\tan \beta}$

Also, determine the height of tower, if $p=50 \mathrm{~m}, \alpha=60^{\circ}, \beta=30^{\circ}$
Q7: From the top of building 15 m high, the angle of elevation of the top of a tower is found to be 30°. From the bottom of the same building, the angle of elevation of the top of water is found to be 45°. Determine the height of the tower and the distance between the tower and the building.

Q8: The angle elevation θ of the top of a light house, as seen by a person on the ground, is such that $\tan \theta=\frac{5}{12}$. When the person moves a distance of 240 m towards the light house, the angle of elevation becomes \varnothing such that $\tan \varnothing=\frac{3}{4}$. Find the height of the light house.

Ashwani Gupta

Q9: From a window (60 m high above the ground) of a house in a street the angles of elevation \& the depression of the top \& the foot of another house on the opposite side of street are 60° $\& 45^{\circ}$ respectively. Show that the height of the opposite house is $60(1+\sqrt{3})$ metres.

Q10: If the angle of elevation of a cloud from a point h metres above a lake is $a \&$ the angle of depression of its reflection in the lake is β, prove that the distance of the cloud from the point of observation is $\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}$.

Q11: From an airplane vertically above a straight horizontal plane, the angle of depression of two consecutive kilometer stones on the opposite sides of the airplane are found to be $\alpha \& \beta$. Show that the height of the airplane is $\frac{\tan \alpha \tan \beta}{\tan \alpha+\tan \beta}$.

Q12: A man standing on the deck of the ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as $60^{\circ} \&$ the angle of depression of the base of the hill as 30°. Find the distance of the hill from the ship \& the height of the hill.

Q13: The angle of elevation of the top if a tower from two points P \& Q at distances of $a \& b$ respectively from the base $\&$ in the same straight line with it are complementary. Prove that the height of the tower is $\sqrt{a b}$.

Q14: As observed from the top of a light-house, 100 m high above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30° to 60°. Determine the distance travelled by the ship during the period of observation. (use $\sqrt{3}=1.732$)

Q15: An aeroplane flying horizontally 1000 m above the ground, is observed at an angle of elevation of 60° from a point on the ground. After a flight of 10 seconds the angle of elevation at the point of observation changes to 30°. Find the speed of the plane in $\mathrm{m} / \mathrm{sec}$.

Q16: The angle of elevation of a jet plane from a point A on the ground is 60°. After a flight of 15 sec , the angle of elevation changes 30°. If the jet plane is flying at a constant height of $1500 \sqrt{3} m_{,}$find the speed of the jet plane.

Q17: The angle of elevation of the top of a tower as observed from a point on the ground is ' α ' \& on moving " α " meters towards the tower, the angle of elevation is ' β '. Prove that the height of the tower is $\frac{\alpha \tan \alpha \tan \beta}{\tan \beta-\tan \alpha}$.

Q18: The angle of elevation of an airplane from a point on the ground is 45°. After a flight of 15 sec , the elevation changes to 30°. If the airplane is flying at a height of 3000 m , find the speed of the airplane.

Q19: If the angle of elevation of a cloud from a point h metres above a lake is $\alpha \&$ the angle of depression of its reflection in the lake is β. Prove that the distance of the cloud from the point of observation is $\frac{2 h_{\sec \alpha}}{\tan \beta-\tan \alpha}$.

Q20: From an airplane vertically above a straight horizontal road, the angles of depression of two consecutive milestones on opposite sides of the airplane are observed to be $\alpha \& \beta$. Show that the height of the airplane above the road is $\frac{\tan \alpha \tan \theta}{\tan \alpha \tan \theta}$.

Q21: A ladder rests against a wall at angle α to the horizontal. Its foot is pulled away from the wall through a distance ' a ', so that its slides a distance b down the wall making an angle β with the horizontal. Show that $\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}$.

Q22: A man rowing a boat away from a light house 150 m high takes 2 min to change the angle of elevation of the top of light house from 45° to 30°. Find the speed of the boat.

Q23: Two boats approach a light house in mid sea from opposite directions. The angles of elevations of the top of the light house from two boats are $30^{\circ} \& 45^{\circ}$ respectively. If the distance between two boats is 100 m , find the height of the light house.

Q24: The pilot of an aircraft flying horizontally at a speed of $1200 \mathrm{~km} / \mathrm{hr}$ observes that the angle of depression of a point on the ground changes from 30° to 45° in 15 sec . Find the height at which the aircraft is flying.

Email: ashwanigupta50@yahoo.com

Answers:

Q1: $8 \sqrt{3} \mathrm{~m}, 32 \mathrm{~m}$
Q2: 1268 m
Q3: height of the tree $=34.64 \mathrm{~m} \&$ width of theriver $=20 \mathrm{~m}$

Q4: $20.784 m, 32.784 m$
Q6: height $=25 \sqrt{3} \mathrm{~m}$
Q8: $225 m$
Q14: 115.46 m
Q16: $720 \mathrm{~km} / \mathrm{hr}$
Q22: $54.9 \mathrm{~m} / \mathrm{min}$
Q24: 6.83 hm

Q5: 21.13 m
Q7: $35.5 m, 35.5 m$

Q12: $17.3 m, 40 m$
Q15: $115.47 \mathrm{~m} / \mathrm{sec}$
Q18: $527.04 \mathrm{~km} / \mathrm{hr}$
Q23: $50(\sqrt{3}-1) m$

